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Summary. The article describes one of the methods
for computing determinants without using fractions
proposed by Bareiss. This problem has a clear algorithmic
character in nature and refers to the field of computer
algebra. The implementation of this algorithm is proposed
in the known Maxima system of symbolic computations.
In addition, this method makes it possible to get enough
convenient formula for the calculation of the matrix of
unitriangular transformation of a quadratic form to a
canonical one.
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INTRODUCTION

Modern computer algebra is inextricably linked with
the use of computer processing technology, and especially
with the software, which includes applied mathematical
packages. Such packages as MatLab and Scilab are
powerful professional mathematical packages. The
essential difference between these packages is that Scilab
is open source software, while MatLab being a
commercial product [1, 2]. These packages have much in
common, particularly, they inherently have a tendency for
performing numerical calculations. Although MatLab
includes many tools of symbolic computations, yet the
most effective up-today systems of analytical computation
are Maple, Maxima, Mathematica. For example, Maxima
system has a modern user interface, powerful
visualization tools of all phases of operation, a wide range
of functions and special packages. The packages for
matrix computations are especially useful [3-5].

However, built-in computer algebra system functions
are not sufficient in some cases. There is a set of
problems, such as calculating a determinant of the matrix
without using fractions, the solutions of which are
connected with certain algorithms, i.e. a set of commands
and functions. The extensive use of matrix algebra in
solving economic and technical problems makes this task
even more urgent [6, 7].

THE ANALYSIS OF RECENT RESEARCHES AND
PUBLICATIONS

Not so much literature is devoted to algorithms for
computer algebra associated with the matrix analysis.
Most of the sources [8-12] on computer algebra contain
materials relating to the issues of numbers representation,
polynomials, rational and algebraic functions, polynomial

simplification of formal integration. Various operations
with such objects assume symbolic computation. In some
literature computer algebra is referred as a branch of
mathematics lying on the intersection of algebra and
numerical methods. Indeed, there are many problems of
algebra and mathematical analysis, which are connected
with symbolic computation [13-17]. The direct analysis of
these issues related to matrices, and, in particular, the
special algorithms for computing determinants, is
presented in [18].

OBJECTIVES

The main aims of this study are:

- to study an algorithm for computing the determinant
of a matrix without using fractions proposed by Bareiss,
followed by the implementation of this algorithm in
Maxima system.

- to investigate, on the basis of this algorithm, the
reduction of a quadratic form to a canonical one by means
of unitriangular transformation, or rather, to get
convenient formula for calculating the unitriangular
transformation matrix.

THE MAIN RESULTS OF THE RESEARCH

Let us consider the so-called dense matrices. A clear
definition of dense matrices can be given to the aspect of
sparse matrices. The matrix of order n is called sparse, if

the number of its non-zero elements does not exceed n**d
where q<1. So for the sparse matrix of order 50 (with

g=0.5) the number of its non-zero elements equals to

about 350, which accounts to a small percentage of the
total number of matrix elements. As a rule, when dealing
with  sparse  matrices, computer algebra  uses
representations, in which each row of the matrix is
defined by a list of non-zero elements of the row, each
being stored in memory, with indicating the number of its
column. Now it is possible to say that the dense matrices
are those that do not belong to sparse ones.

In the systems of computer algebra dense matrices
are defined by rows. In particular, in Maxima system the
matrix function (the call syntax: matrix(rowl, ..., rown))
is used for presetting matrices. The presence of symbolic
elements in these matrices can lead to serious problems of
"swelling" the data, both the intermediate and the final
ones.

Another serious problem is connected with the
division that occurs, for example, when calculating
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determinants. The idea is that the calculation of the
determinant of the matrix as the sum of the products of
the matrix elements, taken one by one from each row and
each column (the method of calculating the determinant is
sometimes called Cramer's rule ), numerically very
inefficient: the number of operations in this case is
O(n(n"), while the calculation of determinants by
Gaussian elimination algorithm the number of operations
is O(n%. It is obvious, that Gaussian elimination
algorithm requires division which can lead to fractions. In
addition, for matrices with elements of a ring with zero
divisors the successive elimination method may be simply
impossible. This may occur when the elements of the
matrix has no unit divisors. For example, in the residue-
class ring by modulo 6, the determinant of the matrix

4 3
(3 4} equals to 1, however, elements 3 and 4 in ring

Z have no unit divisors, making it impossible to divide,

i.e. to apply the algorithm of elimination.

As noted in [18], there is a whole family of
elimination methods without using fractions, i.e., those
where all appropriate division are performed accurately.
Let us consider in detail a step-by-step algorithm for
computing determinants without using fractions, proposed
by Bareiss, which is based on generalization of
Sylvester’s identity [19].

We introduce some notation. Let a square matrix be
given A=(a;) of order n, where the matrix elements

being integers. Consider the determinant of the following
form:

1 & - A Ay
a1 8y ... Ay Ayj
AK =] e e @)
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Note that the determinant A(Kk,i, j)is obtained by
bordering the i-th row and the j-th column of the upper-
left corner (main) minor A, of order k of matrix A, where

n>i j>k.

The basic ratio of the step-by-step algorithm for
computing determinants without using fractions has the
following form:

1
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It is obvious, that the value of the determinant
A(k,i, j) is an integer (from (1) it can be computed by
Cramer's rule). Hence, the right side of (2) is an integer,
i.e. the division is performed without a remainder.

This makes it possible to calculate the determinant of
the matrix A in step-by-step way, the intermediate results

being integers. According to (1), det(A)=A(n-1n,n).
On the other hand, according to (2):

det(A)=A(h—-1Ln,n)=
1
= X
A(N-3,n—-2,n-2)
A(n-2,n-1,n-1) A(h—-2,n-1,n)
A(N=2,n,n-1) A(N=2,n,n) |

We are dealing with a recursive algorithm, which in
Maxima system can be implemented as follows:

determ[n,i,j]:=

if n=1 then A[n,n]*A[i, j]-A[i,n]*A[n,j] else

if n=2 then (1/A[n-1,n-1])*(determ[n—1,n,n]*
determ[n—1,i,j]-determ[n—1,n,j]*determ[n—1,i,n]) else
(1/determ[n-2,n—1,n—1])*(determ[n—1,n,n]*
determ[n—1,i,j]-determ[n—1,n,j]*determ[n—1,i,n])$.

This algorithm is a relative of the algorithms of
elimination elements. Indeed, consider an arbitrary
symbolic square matrix:

A=([allal?,..], [a21,a22,..], [a3L,a32, ..], ..)).

Let us perform the following elementary
transformations of the rows of this matrix (as a rule, such
a transformation is performed at a reduction of a matrix to
echelon form for calculating the rank of a matrix or
solving the system of linear equations). We multiply the
first row of the matrix to the element a21, and the second
row to the element (—all), and then add the first row to
the second one. The second row will look:

[0, alla22 —al2a?l, alla23—al3a?l,...].

The resulting second row in the notation of (1) can be
rewritten as follows:

[0, A(L2,2), AL23),...].

Similarly, we set to zero the element a3l and repeat
the procedure for the newly obtained second and third
rows. We have

[0, 0, all-A(2,33),...].

It is obvious, that all of the remaining elements of the
third row are divided by all. A similar situation occurs
for the following rows, which provides integer results.

Let us consider one more algebraic problem, which is
reduced to a recursive algorithm, while again there occur
the determinants of type A(k,i, j).

Let f(X)=2718%X;
A=(a;) being a matrix of a quadratic form. Lagrange’s

be a quadratic form, where

method, the eigenvectors method and Jacobi’s method can
be referred as the most well-known methods of reducing a
quadratic form to a canonical one. The reduction problem
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involves finding the canonical coefficients and the
corresponding transformation, i.e. a matrix B that
A'=BTAB being a diagonal matrix. For Lagrange’s
method and the method of eigenvectors the reduction
problem is fairly well presented in any textbook of
algebra. However, when using the Jacobi’s method
(which is also called the method of unitriangular
transformation), as a rule, researchers confine themselves
to finding the canonical coefficients. Constructing an
appropriate transformation is based on the following
theorems [20].

Theorem 1. Let a matrix of a quadratic form be non-
degenerate. In order to transform it to a canonical form
using a right unitriangular matrix, it is necessary and
sufficient that the principal minors of the matrix of the
quadratic form be non-zero.

Theorem 2. For the presentation of a non-degenerate
matrix A= (g;)of order n as a product of the left

unitriangular, diagonal and right unitriangular matrix, i.e.
A=LDR, itis necessary and sufficient that the principal
minors of the matrix be non-zero.

Since the matrix of a quadratic form is symmetric,

A=R'DR. Introduce the following notation:

R X

where: n>k>2, b =al.

Provided that A=R'DR, the equality
A =R, DR, is true. This leads to the following
relationships:

_detA Ay
detAcy Ay,
Xy = Dy (Rey) ay

k

where: is an unknown
column.

In case of n=3, we have:

Dy =dy=a;, R =1 X,

A,
X2 =d171‘312=@- R, = . A |
Ay 0 1
a3
X3=D;"(R]) ™ [ay5855]" = A ,
811873 — 1283
dyd,
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n - A(L,2,3)
3 AL2,2) |
0 0 1

Thus, we get enough convenient formula for

calculating the matrix (in fact, it is a matrix R™*) of
unitriangular transformation of a quadratic forms to a
canonical one for dimension 3.

Further calculations show that when increasing the
dimension the matrix R has the following form:

1 22 A A

A1 A1 A1
A(1,2,3) A2, j)
R= A(L2,2) AL2,2)
A(2,33)

CONCLUSIONS

The following important conclusions can be drawn
from this study:

1. As a result of analyzing the known packages of
computer algebra the decision of using Maxima system in
further investigations has been made. This system has all
functions and libraries necessary for performing matrix
computations.

2. Learning different literature on computer algebra
enables to state that insufficient attention is paid to special
algorithms of matrix computations. The problems of
implementing these algorithms in the systems of
computer algebra are not being practically discussed.

3. Based on the step-by-step algorithm for
computing determinants without using fractions, proposed
by Bareiss, the recursive procedure for computing minors
of the type A(k,i,j) in Maxima system has been
constructed.

4. More detailed study of Jacobi’s method (the
method of transformation of a quadratic form to a
canonical one) also leads to minors of the type A(K,i, j).
In particular, the convenient formula for computing
matrices of unitriangular transformation, which uses
minors of the type A(k,i, j) has been obtained in this
study.
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HEKOTOPBIE AJITOPUTMBbI
KOMIIBIOTEPHOM AJITEBPHI

O.B. IlopkysiH, A.C. Tumomun, JI.B. Tumommnna

AnHOTanus. B cTtaTbe paccMOTpEH OJIMH U3 METO/I0B
BBIUHCIICHUSI OTIPEICTUTENICH 0€3 HCIOIb30BaHUS APOOCH,
npeanokeHHsld bapeiicom. Jrta 3amada uMeeT YeTKO
BBIPAKCHHBIN aJITOPUTMUYECKUI XapaKTep U OTHOCUTCS K
pasmeny — KOMIBIOTEPHON  anreOpsl. Peanuzanus
COOTBETCTBYIOIIIETO  ajrOpUTMa  Ipe[yiaraercs B
M3BECTHOM CHCTEME CHMBOJBHBIX BhIYHCIeHHIi Maxima.
Kpome Toro, 3TOT METOA MAaeT BO3MOXKHOCTH MOJYYHTH
JOCTaTOYHO yMOOHYIO0 (GOpPMYyIy UIS pacdera MaTpPHIIBI
VHUTPEYTONFHOTO  TpeoOpa3oBaHWs  KBaJpPaTUIHOM
(OpMBI K KAHOHUYECKOMY BUJLY.

KnroueBbie cioBa: KOMIbIOTEpHas anredpa, cucrema
Maxima, OTIPEICIUTEITb, aITOPUTM Bapeiica,
KBaJpaTuyHas Gopma, YHUTPEYroJbHOE TpeoOpa3oBaHue.
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