Вісник СНУ ім. В.Даля № 1 (281) 2024
Permanent URI for this collection
Browse
Browsing Вісник СНУ ім. В.Даля № 1 (281) 2024 by Subject "reactor"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Вплив функції активації лінійної нейронної мережі на апроксимацію даних основних каналів керування реактру синтезу оцтової кислоти.(СНУ ім. В. Даля, 2024) Поркуян, О. В.; Самойлова, Ж. Г.; Porkuian, O. V.; Samojlova, Zh. G.Штучні нейронні мережі будуються за принципами організації та функціонування їх біологічних аналогів. Вони можуть вирішувати широке коло завдань розпізнавання образів, ідентифікації, прогнозування, оптимізації керування складними об'єктами. Подальше підвищення продуктивності комп'ютерів дедалі більше пов'язують із штучними нейронними мережами, зокрема нейрокомп'ютерами. Нині з'являється більше інтелектуальних систем керування технологічними процесами у хімічної промисловості, у яких вирішуються завдання адаптації, самонавчання, самоналаштування. Для вирішення завдання керування технологічними процесами в хімічній промисловості використовуються багатошарові лінійні нейронні мережі зі зворотним розповсюдженням помилки. Для побудови багатошарової мережі для проміжного шару часто використовують функції активації типу логічної (logsig) або гіперболічного тангенсу (tansig), а для кінцевого шару використовується лінійна функція активації (purelin). У цій роботі для побудови та дослідження властивостей нейронної мережі використовувалися статистичні дані реального реактора синтезу оцтової кислоти, який працює у стаціонарному режимі в цеху оцтової кислоти,. Для моделювання використовувалося середовище програмного симулятора MATLAB 2021. Ця програма рекомендована для моделювання різних нейронних мереж із різною кількістю нейронів і різним типом функції активації. В даній роботи була побудована і досліджена лінійна нейронна мережа зі зворотним поширенням помилки з фіксованою кількістю нейронів першого шару за основними каналами керування реактором синтезу оцтової кислоти. В роботі досліджувався вплив функцій активації першого шару та кінцевого шару нейронної мережі на апроксимацію даних реактора синтезу оцтової кислоти. Архітектура нейронної мережі перший шар містить 23 нейрона. Функція активації нейронів змінюється. Спочатку це функція hardlim, потім функція tansig, потім функція logsig і purelin. Другий шар містить один нейрон також з різними функціями активації: hardlim, tansig, logsig і purelin. Діапазон зміни входу [8900-9800]. Моделювання нейромережі з використанням MATLAB 2021 показало успішність процесу побудови та навчання нейронної мережі та його задовільну якість, яка дозволить використовувати нейромережі для керування технологічними процесами синтезу оцтової кислоти та перспективність подальших досліджень цього напряму.