кафедра інформаційних технологій та програмування
Permanent URI for this community
Browse
Browsing кафедра інформаційних технологій та програмування by Subject "методи і алгоритми селекції інформативних ознак та зниження часової складності розпізнавання"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Екстенсіональний підхід до розпізнавання растрових зображень на основі їх символьних перетворень.(СНУ ім. В. Даля, 2023) Захожай, О. І.; Крохмаль, А. В.Стаття присвячена вирішенню актуального питання вдосконалення методів та інформаційних технологій розпізнавання растрових зображень для різноманітного прикладного застосування. На сьогодень, існує значне різноманіття методів обробки і розпізнавання растрових зображень. Аналіз цих методів і підходів, наведений в статті, показав доцільність їхнього застосування для певних прикладних застосувань. При цьому універсальні рішення відсутні. Крім того, обробка растрових зображень пов’язана з додатковою проблемою використання значних обсягів пам’яті для зберігання еталонів, а також надмірні витрати машинного часу для обробки великих масивів даних. В статті представлений новий підхід до підвищення швидкості розпізнавання растрових зображень з одночасним зменшенням розмірності масиву даних, що підлягають співставленню. Цей підхід базується на перетворенні растрових зображень в символьний вигляд з подальшим зберіганням і співставленням під час розпізнавання. Згідно методу, піксельний масив зображення поділяється на прямокутні сегменти, після чого кожен з них заміняється символом ASCII, максимально подібним за виглядом. Подальше співставлення здійснюється не за окремими пікселями, а за кодуваннями символів фрагменту зображення, що є подальшим розвитком підходу екстенсіонального аналізу. Новий метод дозволяє забезпечити компактність збереження еталонних зображень алфавіту класів, зменшити витрати пам'яті для їх зберігання, а також пришвидшити обробку під час класифікації.