ДН-01-17 «Створення багатофункціональних наукомістких методів енергетичного керування інженерією поверхонь контакту «колесо-рейка» для забезпечення еколого-ефективної передачі потужності»
Permanent URI for this collection
Browse
Browsing ДН-01-17 «Створення багатофункціональних наукомістких методів енергетичного керування інженерією поверхонь контакту «колесо-рейка» для забезпечення еколого-ефективної передачі потужності» by Author "Kovtanets, M."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Development of the theory and methodology of controlling the local tribological contact thermomechanical loading.(2018) Gorbunov, M. I.; Kovtanets, M.; Kostyukevich, A.; Nozhenko, V.; Vaičiūnas, G.; Steišūnas, S.Theoretical and experimental studies have been carried out, which confirmed the fact that the contact temperature is the most important factor affecting the entire complex of service properties of the contacting materials. The authors of the paper propose the control of the frictional interaction of the tribological contact by controlling the temperature by forced cooling, which will stabilize the coefficient of engagement of the wheel with the rail.Item Experimental study of the influence of friction surfaces cooling parameters on the efficiency of the braking system of a railway vehicle operation.(2018) Gorbunov, M. I.; Prosvirova, O.; Kovtanets, M.; Nozhenko, V.; Bureika, G.; Skrickij, V.The purpose of the study is to evaluate the effect of cooling frictional surfaces on the efficiency of the braking system by experimentally determining the coefficient of friction and the temperature of the interacting surfaces under different methods and regimes of cooling. Experimental research established that the mathematical model of the disc brake thermophysical characteristics, which takes into account the adaptive cooling system, ensures a satisfactory match of the results of calculations to experimental data; the discrepancy does not exceed 10-12%. Analysis of the experimental data obtained allows concluding that adaptive cooling of the brake friction surfaces has a positive effect on the braking efficiency. Thus, the coefficient of friction when using this system is 15-30% higher, depending on the performance and temperature of the cooling air, than without its use. The average integral temperature of surfaces in frictional interaction is lower by average of 20-30% compared to the case when adaptive cooling is not used.Item Reducing the wheel-rail system wear intensity with thermomechanical impact.(2019) Gorbunov, M. I.; Kovtanets, M.; Bureika, G.; Kovtanets, T.Item Research to improve traction and dynamic quality of locomotives(2017) Gorbunov, M. I.; Pistek, V.; Kovtanets, M.; Nozhenko, O.; Kara, S.; Kučera, P.The article reviews and analyzes available theoretical and experimental studies aimed at improving the tractive and dynamic characteristics of locomotives. Based on the information received, the authors formulated the following tasks of further research to increase and stabilize traction and coupling qualities of the locomotive.Item Slipping and skidding occurrence probability decreasing by means of the friction controlling in the «wheel-braking» pad and «wheel-rail» contacts(2017) Gerlici, J.; Gorbunov, M. I.; Kravchenko, K.; Domin, R.; Kovtanets, M.; Lack, T.Item Study of rail vehicles movement characteristics improvement in curves using fuzzy logic mechatronic systems.(2019) Kapitsa, M.; Mikhailov, E.; Kliuiev, S.; Semenov, S.; Kovtanets, M.The article deals with the effectiveness of reducing the level of force interaction of the rail vehicle wheels with rails in curved sections of the track through the use of mechatronic position control systems for wheel pairs in the rail gauge in the horizontal plane. The approaches to the creation of such a mechatronic system operating on the principles of fuzzy logic are described. To determine the angles of attack of wheels on the rails, it was proposed to use the acoustic emission indicators of the contact of the wheel with the rail. To determine the direction of curvature of the rail track, it is advisable to use data from navigation systems. The study of the dynamics of the rail vehicle during the passage of a curved section of the track in real time was carried out using the Matlab/Simulink software package. The proposed mechatronic control system for the position of the wheel sets in the horizontal plane allows to ensure their optimal installation under various driving conditions in the rail gauge. This makes it possible to minimize the angles of attack of the wheels and reduce the forces of the horizontal interaction of the wheels with the rails.