Вісник Східноукраїнського національного університету імені Володимира Даля No 3 (279) 2023

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 1 of 1
  • Item
    Моделювання лінійної нейронної мережі з зворотним поширенням помилки для основних каналів керування реактором синтезу оцтової кислоти.
    (СНУ ім. В. Даля, 2023) Поркуян, О. В.; Самойлова, Ж. Г.; Porkuyan, O. V.; Samojlova Zh. G.
    В наш час для управління технологічними об'єктами можуть бути використані нейронні мережі, нечітка логіка чи генетичні алгоритми. Було небагато спроб використати технології штучного інтелекту для по-будови автоматичних систем керування. Однак тільки в останні роки, зі зростанням дослі-джень у галузі нелінійного управління, використання технологій штучного інтелекту в керуванні техноло-гічними процесами набуло широкого поширення. Моделювання та дослідження роботи штучних ней-ронних мереж можна проводити за допомогою про-грамних симуляторів. Найбільш поширеними паке-тами для моделювання властивостей нейромереж є Neural Works Pro Plus, Neuro Solution, Matlab (Neural Network Toolbox), Neuro Wisard, ANsim, Neural Ware та інші. Програми відрізняються складністю, кількі-стю типів нейронів та алгоритмів навчання, що під-тримуються в системі. У статті досліджується побудова лінійних нейрон-них мереж із зворотним розповсюдженням помилки для основних каналів управління реактора синтезу оцтової кислоти. Для побудови та дослідження властивостей нейрон-ної мережі використовувалися статистичні дані ре-актора синтезу оцтової кислоти у стаціонарному режимі цеху оцтової кислоти Сєвєродонецького ЗАО «Азот». Для моделювання використовувалося середо-вище програмного симулятора MATLAB 2021. Ця програма рекомендована для моделювання різних нейронних мереж із різною кількістю нейронів і різ-ним типом функції активації. Для побудови нейрон-ної мережі використовувалася ітераційна проце-дура. Архітектура нейронної мережі: перший шар міс-тить спочатку 9 нейронів, потім 23 нейрона, а згодом 46 нейронів з функцією активації tansig. Дру-гий шар містить один нейрон з функцією активації purelin. Діапазон зміни входу [8900-9800]. Навчання нейронної мережі виконувалося протягом 50 циклів. Потім виконувалося моделювання мережі. Наприкінці моделювання розраховували відносну по-хибку для виходу мережі. У тому випадку, якщо залежності мають лінійний характер для апроксимації даних можна використо-вувати лінійні нейронні мережі з зворотнім поши-ренням помилки. Всі створені та промодельовані ней-ронні мережі для всіх основних каналів керування по-казали задовільну якість апроксимації даних. Якість апроксимації даних складала во всіх випадках менше 1%. Це дозволить використовувати нейромережі для управління технологічними процесами синтезу оцто-вої кислоти та перспективність подальших дослі-джень цього напряму.