Статті (ККІСУ)
Permanent URI for this collection
Browse
Browsing Статті (ККІСУ) by Issue Date
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Ідентифікація об’єктів керування(2010) Ананьєв, М. В.; Целіщев, О. Б.; Лорія, М. Г.; Єлісєєв, П. Й.; Єрохіна, О. В.В статті висвітлюється алгоритм ідентифікації об’єкта керування з часом запізнення ланкою другого порядку з часом запізнення. Для цього використовується крива розгону об’єкту керування. Алгоритм базується на методі найменших квадратів.Item Проектування, алгоритмізація і діагностика систем автоматизованого керування технологічними комплексами(2010) Стенцель, Й. І.; Поркуян, О. В.; Проказа, О. І.Показано, що технологічні комплекси сучасних хімічних виробництв відносяться до багатопараметричних об’єктів з великою кількістю регулюючих, регульованих і збурюючих технологічних параметрів, які супроводжуються реологічними переходами. Розглянуто принцип моделювання таких об’єктів з використанням теорії реологічних переходів і перетворень.Item Adaptive control of ore pulp thinning in ball mills with the increase of their productivity(2014) Porkuian, O.; Поркуян, О. В.The optimal control problem and its solution algorithm for magnetic separation processes based on clear-fuzzy block predictive model are formulated.Item Rheological model of mixing and transformation processes in multiphase medium(2015) Porkuian, О.; Prokaza, O.; Kutaiba, A. A.; Поркуян, О. В.; Проказа, О.Theory of rheological transitions and transformations was used in multiphase medium for description of mixing and transformation processes. In the article there presented models of irreversible rheological transitions and shown that such transitions are described by integrated impulse Dirac delta function. Rheological model of process with the usage of zero gradient method is obtainedItem Some algorithms of computer algebra(2016) Porkuian, O.; Timoshyn, A.; Timoshyna, L.The article describes one of the methods for computing determinants without using fractions proposed by Bareiss. This problem has a clear algorithmic character in nature and refers to the field of computer algebra. The implementation of this algorithm is proposed in the known Maxima system of symbolic computations. In addition, this method makes it possible to get enough convenient formula for the calculation of the matrix of unitriangular transformation of a quadratic form to a canonical one.Item Моделювання лінійної нейронної мережі з зворотним поширенням помилки для основних каналів керування реактором синтезу оцтової кислоти.(СНУ ім. В. Даля, 2023) Поркуян, О. В.; Самойлова, Ж. Г.; Porkuyan, O. V.; Samojlova Zh. G.В наш час для управління технологічними об'єктами можуть бути використані нейронні мережі, нечітка логіка чи генетичні алгоритми. Було небагато спроб використати технології штучного інтелекту для по-будови автоматичних систем керування. Однак тільки в останні роки, зі зростанням дослі-джень у галузі нелінійного управління, використання технологій штучного інтелекту в керуванні техноло-гічними процесами набуло широкого поширення. Моделювання та дослідження роботи штучних ней-ронних мереж можна проводити за допомогою про-грамних симуляторів. Найбільш поширеними паке-тами для моделювання властивостей нейромереж є Neural Works Pro Plus, Neuro Solution, Matlab (Neural Network Toolbox), Neuro Wisard, ANsim, Neural Ware та інші. Програми відрізняються складністю, кількі-стю типів нейронів та алгоритмів навчання, що під-тримуються в системі. У статті досліджується побудова лінійних нейрон-них мереж із зворотним розповсюдженням помилки для основних каналів управління реактора синтезу оцтової кислоти. Для побудови та дослідження властивостей нейрон-ної мережі використовувалися статистичні дані ре-актора синтезу оцтової кислоти у стаціонарному режимі цеху оцтової кислоти Сєвєродонецького ЗАО «Азот». Для моделювання використовувалося середо-вище програмного симулятора MATLAB 2021. Ця програма рекомендована для моделювання різних нейронних мереж із різною кількістю нейронів і різ-ним типом функції активації. Для побудови нейрон-ної мережі використовувалася ітераційна проце-дура. Архітектура нейронної мережі: перший шар міс-тить спочатку 9 нейронів, потім 23 нейрона, а згодом 46 нейронів з функцією активації tansig. Дру-гий шар містить один нейрон з функцією активації purelin. Діапазон зміни входу [8900-9800]. Навчання нейронної мережі виконувалося протягом 50 циклів. Потім виконувалося моделювання мережі. Наприкінці моделювання розраховували відносну по-хибку для виходу мережі. У тому випадку, якщо залежності мають лінійний характер для апроксимації даних можна використо-вувати лінійні нейронні мережі з зворотнім поши-ренням помилки. Всі створені та промодельовані ней-ронні мережі для всіх основних каналів керування по-казали задовільну якість апроксимації даних. Якість апроксимації даних складала во всіх випадках менше 1%. Це дозволить використовувати нейромережі для управління технологічними процесами синтезу оцто-вої кислоти та перспективність подальших дослі-джень цього напряму.Item Development of a Laboratory Unit and a Solid Fuel Gasification Reactor(СНУ ім. В. Даля, 2024) Slobodyanyuk, V. Р.; Shlapak, S. О.; Tselishchev, O. В.; Kudryavtsev, S. О.; Loriia, M. G.; Duryshev, O. A.; Слободянюк, В. П.; Шлапак, С. О.; Целіщев, О. Б.; Кудрявцев, С. О.; Лорія, М. Г.; Дурищев, О. А.The paper investigates the process of gasification of pyrolysis coal and other coal-containing materials A schematic diagram of the installation of the gasification process of pyrolysis coal and other coalcontaining materials was developed, the design of the reactor for coal gasification and the methodology for conducting experiments and analysing the gasification process of pyrolysis coal and other coal-containing materials were developed. Research methods - modelling of the coal gasification process using the results of theoretical studies. A detailed analysis of the experimental and theoretical data concerning the feasibility of the pyrolysis coal gasification process was carried out, a schematic diagram of the laboratory installation and the design of the gasification reactor were developed. The main goal is to develop a method of gasification of solid pulverised fuel that will simplify the process control and ensure its stability due to the unity of the drying and gasification processes of pyrolysis coal, which are linked by means of a gasification reactor. Additionally, this method provides for the neutralisation of harmful impurities generated during the coal gasification process. As a result of theoretical studies of the solid fuel gasification process, a design of a coal gasification reactor was proposed, which is an ideal displacement reactor. The length-diameter ratio for the working part of the reactor should be at least 10:1. It is proposed to use a heat-resistant molybdenum steel tube (operating temperature up to 1600 0C) with a diameter of two inches to manufacture the reactor. Also, to study the gasification process of pyrolysis coal and other coal-containing materials, a laboratory installation for gasification of solid crushed fuel is proposed, in which a gas mixture of carbon dioxide and oxygen is fed into the reactor and serves as an activator of the gasification process. The prospects of coal processing by gasification to produce a mixture of combustible gases (H2, CO, CH4) are investigated. It is analysed that coal gasification allows obtaining valuable gas that can be used not only as an energy fuel, but also as a technological raw material for the production of methanol, dimethyl ether, hydrogen production, and use as a reducing agent in metallurgical processes.Item Практичні навички при використанні графічного редактора AUTOCAD в навчальному процесі(СНУ ім. В. Даля, 2024) Карпюк, Л. В.; Давіденко, Н. О.; Ганжа, С. А.; Гурін, О. М.Розглянуто можливості застосування графічного редактора AutoCAD у формуванні готовності випускників технічного вузу до графічної діяльності. Наведено приклади вирішення навчальних завдань з основних розділів дисципліни «Інженерна та комп'ютерна графіка»: проєкційне, машинобудівне креслення, що дозволяє студентам набувати широкого спектра графічних компетенцій, затребуваних у професійній діяльності інженера. Важливе місце в підготовці фахівців з технічною освітою займає комп’ютерна та інженерна графіка. Уміння читати й виконувати кресленик – необхідна умова успішної роботи на виробництві. Тому метою вивчення цієї дисципліни є опанування знаннями, навичками та вміннями читати кресленики, використовуючи знання та вміння в подальшому навчанні та майбутній фаховій діяльності. Вивчаючи предмет, студенти ознайомлюються з правилами оформлення кресленика згідно ЄСКД, з видами конструкторської документації. Кресленик є графічним засобом висловлювання задумів конструктора чи проєктувальника, і навіть основним виробничим документом, з якого здійснюється виготовлення машин, механізмів та його складових частин, і навіть проєктування різних схем. Теоретичні знання та практичні навички для виконання та читання креслеників виробів дає навчальна дисципліна «Інженерна та комп’ютерна графіка». Вона сприяє розвитку просторової уяви, дуже необхідної інженеру у творчій діяльності. Кресленик предмета складається з сукупності двох і більше взаємозалежних зображень, виконаних за правилами прямокутного проєктування, а також з дотриманням правил та умовностей, викладених у стандартах ЄСКД та інших спеціальних стандартах Кресленик має бути по можливості наочним, оборотним, тобто давати можливість точно відтворювати форму і розміри предмета, мати простоту побудови. Способи побудови зображень предметів методом проєктування, що вивчаються в інженерній графіці, дозволяють за креслеником створювати просторові образи предметів, визначати їх взаємне розташування та розміри, досліджувати та моделювати різні технічні форми та конструкції. Інженерна графіка розвиває просторове мислення геометричними образами, необхідне для професійної діяльності інженера під час вирішення різних технічних завдань, виконанні та читанні креслеників. Особливого значення інженерна графіка набуває при переході на комп'ютерне моделювання та автоматизоване виконання креслеників, оскільки програмне забезпечення засноване на теоретичних положеннях, поняттях та способах вирішення різних завдань, що вивчаються виключно в інженерній графіці.Item Вплив функції активації лінійної нейронної мережі на апроксимацію даних основних каналів керування реактру синтезу оцтової кислоти.(СНУ ім. В. Даля, 2024) Поркуян, О. В.; Самойлова, Ж. Г.; Porkuian, O. V.; Samojlova, Zh. G.Штучні нейронні мережі будуються за принципами організації та функціонування їх біологічних аналогів. Вони можуть вирішувати широке коло завдань розпізнавання образів, ідентифікації, прогнозування, оптимізації керування складними об'єктами. Подальше підвищення продуктивності комп'ютерів дедалі більше пов'язують із штучними нейронними мережами, зокрема нейрокомп'ютерами. Нині з'являється більше інтелектуальних систем керування технологічними процесами у хімічної промисловості, у яких вирішуються завдання адаптації, самонавчання, самоналаштування. Для вирішення завдання керування технологічними процесами в хімічній промисловості використовуються багатошарові лінійні нейронні мережі зі зворотним розповсюдженням помилки. Для побудови багатошарової мережі для проміжного шару часто використовують функції активації типу логічної (logsig) або гіперболічного тангенсу (tansig), а для кінцевого шару використовується лінійна функція активації (purelin). У цій роботі для побудови та дослідження властивостей нейронної мережі використовувалися статистичні дані реального реактора синтезу оцтової кислоти, який працює у стаціонарному режимі в цеху оцтової кислоти,. Для моделювання використовувалося середовище програмного симулятора MATLAB 2021. Ця програма рекомендована для моделювання різних нейронних мереж із різною кількістю нейронів і різним типом функції активації. В даній роботи була побудована і досліджена лінійна нейронна мережа зі зворотним поширенням помилки з фіксованою кількістю нейронів першого шару за основними каналами керування реактором синтезу оцтової кислоти. В роботі досліджувався вплив функцій активації першого шару та кінцевого шару нейронної мережі на апроксимацію даних реактора синтезу оцтової кислоти. Архітектура нейронної мережі перший шар містить 23 нейрона. Функція активації нейронів змінюється. Спочатку це функція hardlim, потім функція tansig, потім функція logsig і purelin. Другий шар містить один нейрон також з різними функціями активації: hardlim, tansig, logsig і purelin. Діапазон зміни входу [8900-9800]. Моделювання нейромережі з використанням MATLAB 2021 показало успішність процесу побудови та навчання нейронної мережі та його задовільну якість, яка дозволить використовувати нейромережі для керування технологічними процесами синтезу оцтової кислоти та перспективність подальших досліджень цього напряму.Item Системи керування трьохполочним газовим реактором у виробництві аміаку з моделлю. Розробка алгоритму.(СНУ ім. В. Даля, 2024) Гурін, О. М.; Gurin, О. М.В цій роботі представлений підхід до розробки системи керування з моделлю газового реактору синтезу аміаку. Комбінована форма моделі дозволяє використовувати переваги як експериментально- статистичного, так і детермінованого підходів, що забезпечує високу адекватність, легку адаптованість і широкий спектр застосувань — ключові аспекти при оптимізації та керуванні складними технологічними об’єктами. З використанням цього підходу створена модель триполичного газового реактору синтезу аміаку. На основі отриманих результатів розробляються програми для реалізації запропонованих алгоритмів в автоматизованій системі керування виробництвом аміаку, а також здійснюється їх адаптація для виробничих умов. Впровадження даної системи дозволить звузити діапазон параметрів технологічного процесу навколо оптимального значення, що приведе до значного економічного ефекту. Було розроблено уточнену інформаційно- логічну схему газового реактору синтезу аміаку, яка дозволила детально описати внутрішні зв’язки об’єкта керування та оцінити їх вплив на вихідні координати реактору. Створено алгоритм роботи системи керування з моделлю газового реактору синтезу аміаку, отримано загальний вигляд математичної моделі реактору з вбудованим внутрішнім теплообмінником, що дало змогу визначити рівняння критерію оптимальності роботи реактору. Запропонований підхід дозволяє, вирішивши оптимізаційну задачу, визначити такі значення витрат "холодних" байпасів, при яких реактор працюватиме в умовах, близьких до оптимальних. Це забезпечує швидкий перехід системи до області, близької до оптимальної. Після цього оптимальне значення концентрації метанолу на виході реактору синтезу визначається методом Хука-Дживса. моделі для наступної оптимізації й керування складним технологічним об’єктом. Виконано аналіз технологічного процесу синтезу аміаку як об’єкта керування. Розроблена математична модель полки газового реактору синтезу аміаку. Розроблена математична модель внутрішнього теплообмінника. Розроблено математична модель газового реактора синтезу аміаку. Для визначення невідомих параметрів математичної моделі запропоновано систему тестових впливів на трьохполочний газовий реактор шляхом змін витрат синтез-газу по холодним бай пасам на відому фіксовану величину. Отримано аналогічне рівняння четвертого ступеня, що повязує концентрацію аміаку на виході трьохполочного реактора з технологічними параметрами. Запропоноване рівняння може бути використано для розв’язування оптимізаційної задачі. На підставі отриманих результатів розробляються програми для реалізації запропонованих алгоритмів в АСУ ТП виробництва аміаку.